Drones - How Can They Help My County?

Jeremy McLaughlin, MBA, PE

Reaching New Heights

34th Annual North Central Local Roads Conference Rapid City, SD - October 16-17, 2019

"Basic" Drone Technology

Drone Technology

HEI Drone Program

- 12 pilots who are certified to fly drones across the Upper Midwest
- Trained surveyors and technical professionals boots on the ground
- Front edge of the technological world software to drones

Drone Technology

WHAT DATA CAN A **DRONE CAPTURE? High Quality Photos 4K Resolution Video** Volume of Material **Existing Topography for Digital Elevation Models**

(accuracy will depend on project)

Minnesota County Survey of Materials

Client Benefits

- County can now measure fill at any time of the year instead of waiting for winter
- Surveyors no longer have to climb a potentially dangerous mound
- Provided a 3D surface and fill report to the County

Drone Technology

Drone Technology

The City of Lake Park in Minnesota enlisted HEI to capture drone footage of their bridge construction progress to share with the public through Facebook.

Drone-Based LiDAR (DBL)

Drone-Based LiDAR

Drone-based LiDAR technology is enhancing the way to collect survey and LiDAR data

Drone-Based LiDAR

State-of-the-art drone LiDAR system and analysis software provide cost effective and accurate survey packages to clients

Goals of DBL

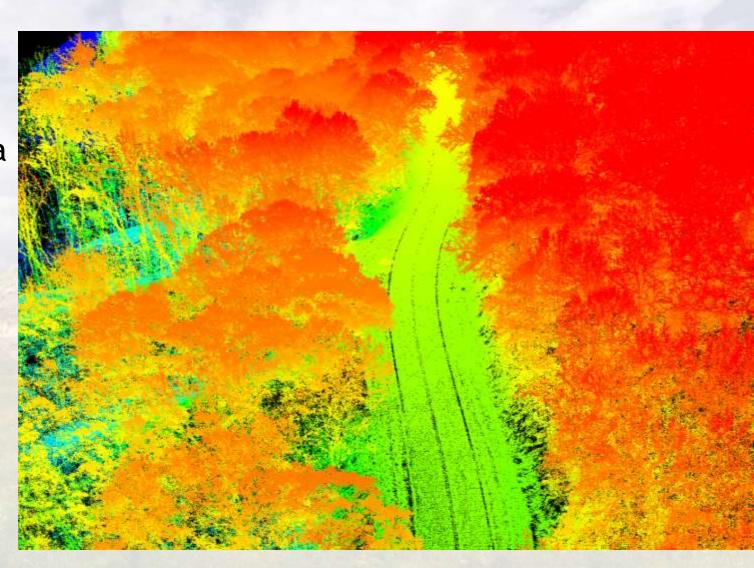
GPS level accuracies of the point cloud

One data collect for the entire project

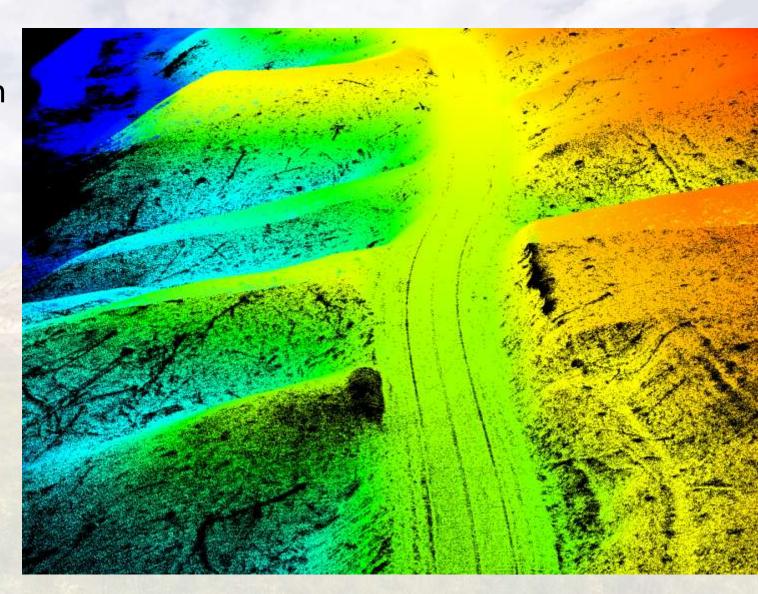
- 1,000+ feet of corridor width
 - ROW Issues?

Point cloud density at or above 30 points per foot

Keep surveyors off roadways as much as possible


Example Highway Projects

- Extremely difficult survey 1:1 slopes and dense vegetation
- LiDAR could accurately survey through the trees and slopes
- Penetrated dense tree cover and vegetation
- Onsite about 6 hours
- Surveyed 3 sites
- Total 10 miles


Too Much Data?

- •Full LiDAR collection
- •Video of area fly through

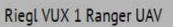
Nope!

Ground classification only

2019 North Central Local Roads Conference

Not Your Ordinary Drone

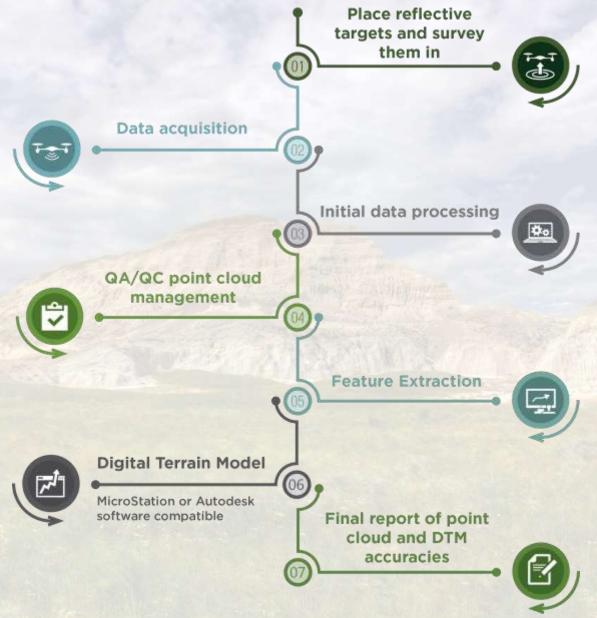
- ALTUS Intelligence Orc 2
- MFD 5000 (Watts Innovations Custom Drone)
- <55 lbs. TOTAL



Top of the Line Sensors

550k points/sec, 7 returns

+/- 1-2 cm Accuracy



700k points/sec, 7 returns

EO Camera

Typical Workflow on a Project

Drone-Based LiDAR Survey Process

Survey Tasks

Platform Determination

- Is the project best suited to dronebased LiDAR or mobile LiDAR?
- Same LiDAR sensor used for both platforms

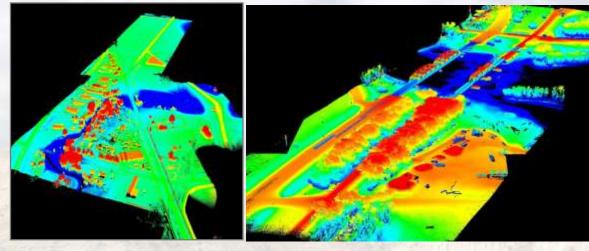
Project Control

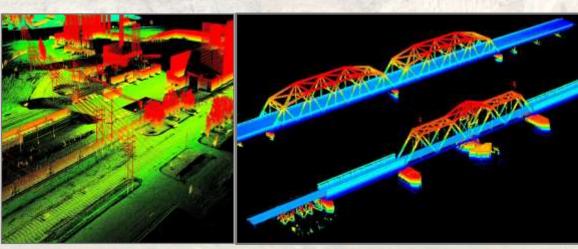
- Establishment of Control Network
- LiDAR Control Targets

Survey Tasks

Supplemental Survey Tasks

- Ground Truthing
- "Void" Areas


PLSS, Alignment, and Right-of-Way



Turning Drone-Based LiDAR into a Deliverable

Quality and Accuracy

- Drone-based LiDAR allows us to capture millions of data points with surveygrade vertical accuracy
- More data points = highly accurate surface models for design deliverables
- Need experts in data processing

Process from Collection to Deliverable

Feature Extraction

- Topographic
- Spot elevation
- Void/obscured areas

Generate Existing Ground Surface

- MicroStation
 - InRoads
 - GeoPak
- AutoCAD
- Other design platforms

sensor upgrade

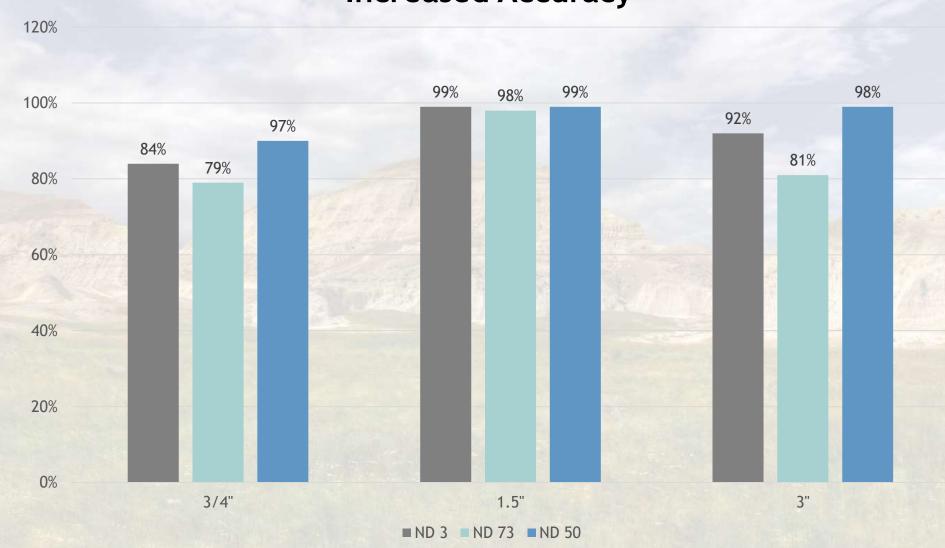
sensor upgrade

ND 3 - 18 miles flat/rolling terrain

- Point density is key
- Mowing
- Void identification

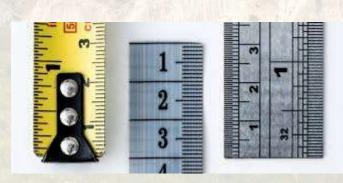
ND 73 - 11.5 miles rough terrain

- Doubled point density
- Processing techniques to maximize accuracy while minimizing file size of the final deliverable



ND 50 - 20 miles flat terrain

- 10-15 times the point density


What We've Learned

Increased Accuracy

What We've Learned

- But what does that really mean?
 - Average difference between control and final surface ~
 - On the road: 0.02' or 1/4"
 - Off the road: 0.08' or 1"

Flexibility and Time Savings

- Drone-based LiDAR flights can be done within hours vs. several days or weeks compared to traditional survey methods
- Weather and cloud coverage are no obstacles when scheduling flights since drones can fly at lower levels and at night
- Drone flights require less manpower than a typical survey crew, thus can mobilize quickly to reach job sites
- It eliminates the scheduling hassles of a plane for aerial LiDAR

Safety

- Drones can be flown over rough, unstable terrain or unreachable areas
- •Team uses <u>trained pilots</u> (not just drone, actual pilots) and survey professionals. We understand the complex FAA relationships to ensure we're flying in compliance and always with safety in mind
- Drones can fly at NIGHT for busy roadways or complex urban projects to lessen impacts to traffic

Cost

- Traditional surveys hours vs. days for actual survey
- Drone-based LiDAR higher processing costs

Rough Cost Savings

- •20% less expensive than Stereo Compilation
- •30%-50% less expensive than traditional survey methods

HEI's Capabilities

Established in 1968

220+ employees

Focus on Emerging Technologies

- GIS
- · Website and computer programming
- Software development and sales
- Drones and survey technology
- · Etc.

Core Service Areas

- Transportation
- Survey
- Environmental
- Water Resources
- Municipal
- GIS/Web Apps
- Land/Site Development
- · Planning/Landscape Architecture
- Waste Management

More Information/Resources

Jeremy McLaughlin 701.499.2065 jmclaughlin@houstoneng.com

Chad Qualley
701.499.2072
cqualley@houstoneng.com

Drones - How Can They Help My County?

Jeremy McLaughlin, MBA, PE

Reaching New

34th Annual North Central I Roads Conference Rapid City, SD - October 16-17, 2019

Results

GPS level accuracies of the point cloud

- One data collect for the entire project
 - Down and back travel off the road
- 1,000+ feet of corridor width

Point cloud density at or above 30 points per foot