Truck Loads What is an ESAL anyway?

Ken Nysether, PE (ND)

Reaching New Heights

34th Annual North Central Local Roads Conference Rapid City, SD - October 16-17, 2019

Truck Loads What is an ESAL anyway?

Ken Nysether, PE (ND)

Reaching New Heights Weights

34th Annual North Central Local Roads Conference Rapid City, SD - October 16-17, 2019

"Fancy" Terms

- Average Daily Traffic (ADT) Average traffic volume without bias based on day of the week or season
- Structural Number (SN) Required strength of each layer of material in the design
- Equivalent Single Axle Load (ESAL) Traffic behavior in terms of a standard axle weight

"Fancy" Terms Cont.

Load Equivalency Factor (LEF)

Trucks vs. Cars - not a direct relationship
Standard Garbage Truck: 0.58
Passenger car or pickup: 0.0003

Load Equivalency Factors

Table 1. Some Typical Load Equivalency Factors

Axle Type (lbs)	Axle Load		Load Equivalency Factor (from AASHTO, 1993)	
	(kN)	(lbs)	Flexible	Rigid
Single axle	8.9 44.5 62.3 80.0 89.0 133.4	2,000 10,000 14,000 18,000 20,000 30,000	0.0003 0.118 0.399 1.000 1.4 7.9	0.0002 0.082 0.341 1.000 1.57 8.28
Tandem axle	8.9 44.5 62.3 80.0 89.0 133.4 151.2 177.9 222.4	2,000 10,000 14,000 18,000 20,000 30,000 30,000 34,000 40,000 50,000	0.0001 0.011 0.042 0.109 0.162 0.703 1.11 2.06 5.03	0.0001 0.013 0.048 0.133 0.206 1.14 1.92 3.74 9.07

https://www.pavementinteractive.org/reference-desk/design/design-parameters/equivalent-single-axle-load/

1967 Lincoln Continental LEF = 0.0004

Standard Logging Truck

LEF Example

- Assume logging trucks have 3 axles:
 - Tractor
 - Steering axle (single axle) = 14,000 lb
 - Drive axle (tandem axle) = 34,000 lb
 - Trailer
 - Pole trailer axle (tandem axle) = 30,000 lb
 - Total ESALs would be*:
 - Steering axle @ 14,000 lb = 0.47 ESAL
 - Drive axle @ 34,000 lb = 1.15 ESAL
 - Pole axle @ 30,000 lb = 0.79 ESAL

TOTAL = 2.41 ESAL

*Assumes $p_t = 3.0$, SN = 3

https://www.pavementinteractive.org/reference-desk/design/design-parameters/equivalent-single-axle-load/

Pavement Design

 Utilizing the factors mentioned and a few others, engineers use this equation to determine the total Structural Number (SN) required to meet design life span

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN+1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

 AASHTO design equation for flexible pavements. The Structural Number is indicated as SN.

Pavement Design

Pavement Design:

• Once the SN is determined, it is used to determine the pavement thickness

 $SN = D_1 a_1 + D_2 a_2 m_2 + D_3 a_3 m_3$

- Where a and m are material specific coefficients
- m is a drainage coefficient
- a is a layer coefficient

Traffic Estimate

• 13 houses

- 2 cars per house
- Each car making 4 trips per day
- 104 trips per day (ADT)
- 37,960 trips each year
- Load equivalency factor = 0.0003
- ESAL 11.39
- Garbage Truck
- Makes one trip per week
- 52 trips per year
- Load equivalency factor = 0.58
- ESAL 30.16
- Total ESAL 41.55

Design 1

- 6" Hot Mix Asphalt (HMA) on 12" Base
- $SN_{total} = D_1a_1 + D_2a_2m_2 = 3.48$
- \$18,100 per STA

SN₂=0.84 SN₁=2.64

Note: Subgrade is neglected in these calculations for clarity of design comparisons

Design 2

- 4" HMA on 8" of Cement Stabilized Base
- $SN_{total} = D_1a_1 + D_2a_2m_2 = 2.90$
- \$10,600 per STA

SN₂=1.14 SN₁=1.76

Note: Subgrade is neglected in these calculations for clarity of design comparisons

Design 3

- 2.5" HMA on 4"-6" Crushed Asphalt Base
- $SN_{total} = D_1a_1 + D_2a_2m_2 = 1.94$
 - SN_{total} = 1.66 for 4" crushed asphalt base
- \$5,700 per STA

Note: Subgrade is neglected in these calculations for clarity of design comparisons

Design Comparison

Design	1	2	3	
Cost per STA	\$18,100	\$10,600	\$5,700	
Structural Number	3.48	2.90	1.94	
ESAL/ year	9500	2800	250	
Total ESALs	190,000	56,000	5,000	
Factor of Safety	190	56	5	

More Information/Resources

Ken Nysether, PE (ND) Sr. Manager II, SEH - Bismarck, ND knysether@sehinc.com 701.354.7121