NORTH DAKOTA ASPHALT CONFERENCE

LEARN

EVOLVEO

IMPLEMENT

UPPER GREAT PLAINS TRANSPORTATION INSTITUT NORTH DAKOTA LOCAL TECHNICAL ASSISTANCE PROSPAM

Delcome

North Dakota

ASP

NDSU

Federal Highway Administration

DAKOTA ASPHALT PAVEMENT ASSOCIATION

erence

APRIL 6-7, 2021

(photo credit: Shane Biggs, Bowman County Highway Superintendent)

Smart Paving: Rolling Density Meter, a TLN Plug

Presented by: Bryce Wuori, Wuori Consulting and Developer of PaveWise

North Dakota Asphalt Conference

Bismarck, ND - April 7-8, 2020

PaveScan RDM 2.0 GPR, Dielectric Principles

- PaveScan 2.0 GPR Overview
- How PaveScan is used as a Quality Control Tool
- Looking for Uniformity
- GPR Project data overview
- Why PaveScan GPR Testing?

PaveScan RDM 2.0 Overview

- Collects surface dielectric value
- Dielectric values indicate uniformity
- Cores can be taken to calibrate with compaction (Pucks can be used instead)
- An option to collect data viewing void content percentage instead of dielectric based on the calibrations

Achieving Quality with PaveScan

Used immediately after compaction, on-site full data shows the potential of possible low-density patterns to be evaluated on-site

- Roller pattern issue
- Paver issue
- Asphalt transportation issue

Having a continuous full coverage information, this can have a direct affect regarding pay factors

Increase chances for incentive payments

- Decrease penalties
- Provide information to improve procedures for both the DOT and contractors

Using PaveScan, RDM 2.0 as a PAQC

Produces Data in Real-Time

- Provides on-site dielectric values of newly laid and compacted asphalt
- Continuous Full Coverage (CFC)
- Provides a full-lane compaction contour map
- Core results calibrate Dielectric to:
 - Compaction percentage
 - Void content percentage
 - Density

Real-Time Data allows Improvements for Quality

- Dielectric Values for uniformity
- Identifying Areas of Low Dielectric
- Core Calibrations

PaveScan, RDM 2.0 Data

PaveScan, RDM 2.0 Data

PaveScan Longitudinal Joint Data

	Joint Density Data	
Lot #	Average Dielectric Collected at Core Locations for Lot	Average Core Density For Lot
2	4.4	90.6
3	4.46	91.5
5	4.33	89.4
7	4.37	90.5
8	4.41	91.6
9	4.45	91.2
11	4.45	91.6
13	4.46	91.6
18	4.62	93.7

PaveScan HMA Mat Data

	Mat Density Data						
Lot #	Average Dielectric Collected at Core Locations for Lot		Average Core Densi [.] For Lot	ty .	Average Median Dielectric fro Method on Mat)	om RDM (Swe	erve
1	Z	4.63	93	3.4		4.67	
2	Z	4.56	93	3.5		4.64	
3	ζ	4.43	93	3.5		4.52	
4		4.54	93	3.6		4.65	
5	Δ	4.44	93	2.5		4.51	
6	i 2	4.52	<mark>9:</mark>	<mark>3.6</mark>		<mark>4.58</mark>	
7	ζ	4.47	93	2.7		4.55	
8	ζ Δ	4.48	93	3.2		4.59	
g	2	4.44	93	2.7		4.53	
10	2	4.59		94		4.68	
11		4.52	93	3.3		4.63	
12	<u> </u>	4.56	9	3.8		4.65	
<mark>13</mark>	2 <mark>2</mark>	4.42	<mark>9:</mark>	<mark>3.7</mark>		<mark>4.58</mark>	
14		4.56	93	3.3		4.61	
15	ζ	4.73	9	5.2		N/A	
18	ζ Δ	4.59	94	4.1		4.65	

Why PaveScan GPR Testing?

Proactive Procedure

No Physical Damage to Asphalt Section

Accurate Representation of Entire Asphalt Section

Elimination of guessing on if quality is being achieved

Modification made to benefit entire Asphalt Section

Questions?

Wuori Consulting Bryce.W.Wuori@gmaill.com

Dakota Asphalt Pavement Association, Inc.

"Dedicated to Quality Asphalt Paving Through Engineering, Research, and Education"

NDSU

UPPER GREAT PLAINS TRANSPORTATION INSTITUTE NORTH DAKOTA LOCAL TECHNICAL ASSISTANCE PROGRAM

